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Abstract
Using Monte Carlo simulations on different system sizes we determine with
high precision the critical thresholds of two families of directed percolation
models on a square lattice. The thresholds decrease exponentially with the
degree of connectivity. We conjecture that pc decays exactly as the inverse of
the coodination number.

PACS numbers: 64.60.−i, 64.60.Ak, 05.45.Df

Directed percolation (DP) describes generically the dynamics of adsorbing processes and has
been applied to epidemics, forest fires, surface catalysis, etc [1–6]. DP displays a phase
transition as function of the propagation probability p between an ‘adsorbing’ state and a
percolating (or active) state at a critical threshold pc. The scaling properties of DP have been
known for over two decades.

The value of pc depends on the lattice and the rule of connectivity. In 1+1 dimensions the
most studied case is the tilted square lattice with nearest-neighbour connectivity (see figure 1)
giving pc = 0.6447 ± 0.0001 [7]. For many applications it is of interest to consider a longer
range of connectivities. In particular, also an infinite range model with a probability decaying
as a powerlaw with distance has been studied [8]. Astonishingly, however, what is missing in
the literature are studies of propagation probabilities of intermediate range, although these are
in practice the most common situations. It is therefore the aim of the present paper to calculate
the percolation thresholds of two families of models in 1+1 dimensions having finite, varying
range of interactions.

Model I is defined on a tilted square lattice as shown in figure 1(a). The connectivity k
is given as the number of neighbours to which a site i can be connected in the row below. In
model I, the k is always even. Figure 1(a) also shows the cases k = 2, 4 and 6. Model II is
defined on the standard square lattice and in figure 1(b) we can see the cases k = 1, 3 and 5.
For this case, k is always odd.

We studied the two models up to k = 15 on lattices of sizes ranging from 256 × 20000
to 2048 × 20000. We simulated for each value of k and L the model for different values of
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Figure 1. Schematic plot of the definitions of (a) model I and (b) model II. The full lines correspond
to (a) k = 2 and (b) k = 1, adding the dashed lines one obtains (a) k = 4 and (b) k = 3 and adding
the dotted lines one obtains (a) k = 6 and (b) k = 5.
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Figure 2. Double-logarithmic plot of the percolation thresholds as function of k for model I
(triangles) and of k − 1 for model II (circles).

Table 1. Percolation thresholds of directed percolation for model I and model II.

k I k II

2 0.6447 ± 0.0002 3 0.4395 ± 0.0003
4 0.3272 ± 0.0002 5 0.2249 ± 0.0003
6 0.2121 ± 0.0003 7 0.1470 ± 0.0002
8 0.1553 ± 0.0003 9 0.1081 ± 0.0002

10 0.1220 ± 0.0002 11 0.0851 ± 0.0002
12 0.0999 ± 0.0002 13 0.0701 ± 0.0002
14 0.0846 ± 0.0003 15 0.0549 ± 0.0002

p averaging over 2000 initial configurations and monitored if the system percolated or not.
From the inflection point of the curve χ versus p, where χ is the fraction of realizations that
percolated, we determined pc(L). Finally, we extrapolated to the thermodynamic limit pc

through the expression

pc(L) = pc(1 + aL−1/ν). (1)

In table 1 we show the obtained thresholds with their estimated error bars, and in figure 2
we see these values in a double-logarithmic plot. Since the slope is −1.00 ± 0.05 we conclude
that

pc = η/k (2a)
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with η = 1.3 ± 0.1 for model I and

pc = η/(k − 1) (2b)

with η = 0.9 ± 0.1 for model II.
In summary, we have described in this letter numerical evidence that the percolation

threshold of directed percolation decays such as η/k as a function of the coordination k.
This result is consistent with the dependence of the percolation threshold on the coordination
number on the Cayley tree [9] and we conjecture it to be exact. As a future work, it would be
interesting to calculate the thresholds for higher-dimensional lattices.
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